K is a real number that satisfies the following property : "for every 3 positiv numbers ,a,b,c ; if a+b+c≤K then abc≤K " Can you find the biggest value of K ?
1 Answer
Nov 26, 2017
Explanation:
If we put:
#a=b=c = K/3#
Then:
#abc = K^3/27 <= K#
So:
#K^2 <= 27#
So:
#K <= sqrt(27) = 3sqrt(3)#
If we have
For example, if we fix
#a+b = d#
So:
#abc = a(d-a)c#
#color(white)(abc) = (ad-a^2)c#
#color(white)(abc) = (d^2/4-(a^2-2(a)(d/2)+(d/2)^2))c#
#color(white)(abc) = (d^2-(a-d/2)^2)c#
which has its maximum value when
Similarly if we fix
Hence the maximum value of
So