It is a vector question?
1 Answer
May 1, 2018
p= 6.5 \ \ , andq= -1.5 ,
Explanation:
We have:
bbvec(OA) = ((0),(2),(-3)) \ \ ,bbvec(OB) = ((2),(5),(-2)) \ \ andbbvec(OC) = ((3),(p),(q))
And so we can compute the vector
bbvec(AB) = bbvec(OB) - bbvec(OA) = ((2),(5),(-2)) - ((0),(2),(-3)) = ((2),(3),(1))
Similarly, we can compute the vector
bbvec(BC) = bbvec(OC) - bbvec(OB) = ((3),(p),(q)) - ((2),(5),(-2)) = ((1),(p-5),(q+2))
As ABC is a straight line then, for some constant
bbvec(AB) = lamda bbvec(BC)
Hence we have:
((2),(3),(1)) = lamda ((1),(p-5),(q+2))
Equating components:
R1: 2 = lamda ,
R2: 3=lamda(p-5) => p-5=3/2 => p= 6.5 ,
R3: 1=lamda(q+2) => q+2=1/2 => q= -1.5 ,