It is a vector question?

enter image source here

1 Answer
May 1, 2018

p= 6.5 \ \ , and q= -1.5,

Explanation:

We have:

bbvec(OA) = ((0),(2),(-3)) \ \ , bbvec(OB) = ((2),(5),(-2)) \ \ and bbvec(OC) = ((3),(p),(q))

And so we can compute the vector bbvec(AB) ,

bbvec(AB) = bbvec(OB) - bbvec(OA) = ((2),(5),(-2)) - ((0),(2),(-3)) = ((2),(3),(1))

Similarly, we can compute the vector bbvec(BC) ,

bbvec(BC) = bbvec(OC) - bbvec(OB) = ((3),(p),(q)) - ((2),(5),(-2)) = ((1),(p-5),(q+2))

As ABC is a straight line then, for some constant lamda,

bbvec(AB) = lamda bbvec(BC)

Hence we have:

((2),(3),(1)) = lamda ((1),(p-5),(q+2))

Equating components:

R1: 2 = lamda,
R2: 3=lamda(p-5) => p-5=3/2 => p= 6.5,
R3: 1=lamda(q+2) => q+2=1/2 => q= -1.5,