Is the function f(x)=x^4+3x^-4+2x^-1f(x)=x4+3x4+2x1 even, odd or neither?

1 Answer
Oct 29, 2015

This function is neither even nor odd.

Explanation:

To find if a function is even or odd or neither we have to calculete f(-x)f(x) and see how it compares to f(x)f(x)

In this case we have:
f(-x)=(-x)^4+3(-x)^-4+2(-x)^(-1)f(x)=(x)4+3(x)4+2(x)1

f(-x)=x^4+3x^(-4)-2x^(-1)f(x)=x4+3x42x1

So we see that f(-x)!=f(x)f(x)f(x) and f(-x)!=-f(x)f(x)f(x), so f(x)f(x) is neither even nor odd.