Integration of ; ((1/X(4 + Inx))dx?

1 Answer
Apr 29, 2018

int1/(x(4+lnx))dx=ln|4+lnx|+C

Explanation:

So, we want to determine

int1/(x(4+lnx))dx

This can be solved using a substitution:

u=lnx

du=dx/x

Rewriting the integral a little, we see that du indeed shows up:

int1/(4+lnx)*dx/x

So, apply the substitution:

int(du)/(4+u)

We can apply a second brief substitution here:

v=4+u

dv=du

int(dv)/v=ln|v|+C

=ln|4+u|+C

Rewrite in terms of x:

int1/(x(4+lnx))dx=ln|4+lnx|+C