Integrate #x^3*√(16-x^2)# by using Trigonometric Substitutions (only)???
2 Answers
Explanation:
Here,
Let,
So,
From
Explanation:
Let
#I = int (4sintheta)^3sqrt(16- (4sintheta)^2) d theta * 4costhetad theta#
#I =int 64sin^3theta (4costheta)(4costheta)d theta#
#I = 1024int sin^3thetacos^2theta d theta#
#I = 1024intsin^2thetasinthetacos^2theta d theta#
#I = 1024int (1- cos^2theta)cos^2thetasintheta#
#I = 1024int cos^2thetasintheta - 1024cos^4thetasinthetad theta#
#I = 1024int cos^2thetasintheta d theta - 1024int cos^4theta sin theta d theta#
We now let
#I =1024int u^2 du - 1024int u^4 du#
#I = -1024(1/3u^3) +1024(1/5u^5) + C#
#I = -1024/3u^3 +1024/5u^5 + C#
#I = -1024/3cos^3theta + 1024/5cos^5theta + C#
From our initial substitution we see that
#I = -1024/3(sqrt(16 -x^2)/4)^3 + 1024/5(sqrt(16 - x^2)/4)^5 + C#
#I = -16/3(16 - x^2)^(3/2) +1/5(16 - x^2)^(5/2) + C#
Hopefully this helps!