Notation : We will use the Notation A(bara) to mention that the
position vector (pv) of a point A" is "bara.
Let, in the DeltaABC, A(bara), B(barb), and, C(barc).
Given that, P(barp) is such that, vec(PC)=3/2vec(BC).
Recall that, the pv of vec(PC)=C(barc)-P(p)=barc-barp.
:. vec(PC)=3/2vec(BC)rArr barc-barp=3/2(barc-barb).
:. 2barc-2barp=3barc-3barb.
rArr barp=1/2(3barb-barc)..................(1).
Similarly, if Q(barq), and, C'(barc'), then,
vec(AQ)=1/4vec(AC) rArr barq=1/4(barc+3bara)......(2), and,
clearly, barc'=1/2(bara+barb)....................(3).
Now, prepare appropriate diagram for DeltaABC
(AtoBtoC" anticlockwise", P" btwn. "B and C,
C'" btwn. "A and B, Q" btwn. "A and C").
In the said diagram, PC'Q is transverse in DeltaABC.
By Menelaus Theorem, if we can show that,
(AC')/(C'B)(BP)/(PC)(CQ)/(QA)=1...(ast)," then "P,Q,C'" are collinear".
Here, AC'=||vec(AC')||=||C'(barc')-A(bara)||=||1/2(bara+barb)-bara||,
rArr AC'=1/2||barb-bara||." Similarly, "C'B=1/2||barb-bara||.
BP=1/2||barb-barc||, PC=3/2||barc-barb||.
CQ=3/4||bara-barc||, QA=1/4||bara-barc||.
Utilising these in (ast), we have,
(AC')/(C'B)(BP)/(PC)(CQ)/(QA),
={(1/2||barb-bara||)/(1/2||barb-bara||)}{(1/2||barb-barc||)/(3/2||barc-barb||)}{(3/4||bara-barc||)/(1/4||bara-barc||)},
={1}{1/3}{3/1}
rArr (AC')/(C'B)(BP)/(PC)(CQ)/(QA)=1.
"Therefore, "P,Q,C'" are collinear".
Enjoy Maths.!