In how many ways can you rearrange the letters A, B, C, D, E?

2 Answers

color(chocolate)(5! = 1 * 2 * 3 * 4 * 5 = 120 " ways"5!=12345=120 ways

Explanation:

![http://www.statisticslectures.com/topics/permutations/](useruploads.socratic.org)

"Formula for permutation " nPr = (n! )/ ((n-r)!)Formula for permutation nPr=n!(nr)!

"Given " n = 5, (A, B, C, D, E) " " & " " r = 5, (A, B, C, D, E)Given n=5,(A,B,C,D,E) & r=5,(A,B,C,D,E)

:. nPr = nPn = (n!) / ((n - n)! )= (n!) / 1 = 5!

![https://www.thoughtco.com/why-does-zero-factorial-equal-one-3126598](useruploads.socratic.org)

![https://in.answers.yahoo.com/question/index?qid=20130723054015AAgl5E1](useruploads.socratic.org)

color(chocolate)(5! = 1 * 2 * 3 * 4 * 5 = 120 " ways"

120

Explanation:

The total number of linear arrangements obtained from n=5 different letters A, B, C, D, E is given as

\ ^nP_n

=\ ^5P_5

=5!

=5\times 4\times 3\times 2\times 1

=120