We know that,
#(1)cosx+cosy=2cos((x+y)/2)cos((x-y)/2)#
#(2)A+B+C=pi=A=pi-(B+C)# #to[becausetriangleABC]#
#(3)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)#
Using #(1) and(2)#
#sinA=cosB+cosC#
#:.sin[pi-(B+C)]=2cos((B+C)/2)cos((B-C)/2)#
#:.sin(B+C)=2cos((B+C)/2)cos((B-C)/2)#
Using #sin2theta=2sinthetacostheta, #we get
#2sin((B+C)/2)cos((B+C)/2)=2cos((B+C)/2)cos((B-C)/2)#
#:.sin((B+C)/2)=cos((B-C)/2)to[becausecos((B+C)/2)!=0]#
#cos[pi/2-(B+C)/2]#=#cos((B-C)/2)to[becausecos(pi/2-
x)#=#sinx]#
#cos[pi/2-(B+C)/2]-cos((B-C)/2)=0#
Using #(3)#
#-2sin((pi/2-(B+C)/2+(B-C)/2)/2)sin((pi/2-(B+C)/2-(B-C)/2)/2)=0#
Simplifying we get
#sin(pi/4-C/2)sin(pi/4-B/2)=0#
#sin(pi/4-C/2)=0 or sin(pi/4-B/2)=0#
#=>pi/4-C/2=0 or pi/4-B/2=0#
#=>C/2=pi/4 or B/2=pi/4#
#=>C=pi/2 orB=pi/2#
Hence , #B=pi/2#