If z=a+bi and z* is the conjugate of z. Find the value of a and b when 2/z + 1/z* = 1-i. ?

1 Answer
Nov 11, 2017

The answer is a=3/10 and b=9/10

Explanation:

I use barz for the conjugate.

We need

i^2=-1

(a+ib)(a-ib)=a^2-(i^2)b^2=a^2+b^2

The complex number is z=a+ib

The conjugate is barz=a-ib

2/z=2/(a+ib)=(2(a-ib))/((a+ib)(a-ib))=(2(a-ib))/(a^2+b^2)

1/barz=1/(a-ib)=(a+ib)/((a-ib)(a+ib))=(a+ib)/(a^2+b^2)

Therefore,

2/z+1/barz=(2(a-ib))/(a^2+b^2)+(a+ib)/(a^2+b^2)

=(2a-2ib+a+ib)/(a^2+b^2)

=(3a-ib)/(a^2+b^2)

=1-i

Comparing the real parts and the imaginary parts

(3a)/(a^2+b^2)=1

b/(a^2+b^2)=1

Therefore,

3a=b

(3a)/(a^2+(3a)^2)=1

3a=10a^2

10a^2-3a=0

a(10a-3)=0

Therefore,

a=0 or a=3/10

Reject a=0

a=3/10, =>, b=9/10