If z=a+bi and z* is the conjugate of z. Find the value of a and b when 2/z + 1/z* = 1-i. ?

1 Answer
Nov 11, 2017

The answer is a=310 and b=910

Explanation:

I use ¯z for the conjugate.

We need

i2=1

(a+ib)(aib)=a2(i2)b2=a2+b2

The complex number is z=a+ib

The conjugate is ¯z=aib

2z=2a+ib=2(aib)(a+ib)(aib)=2(aib)a2+b2

1¯z=1aib=a+ib(aib)(a+ib)=a+iba2+b2

Therefore,

2z+1¯z=2(aib)a2+b2+a+iba2+b2

=2a2ib+a+iba2+b2

=3aiba2+b2

=1i

Comparing the real parts and the imaginary parts

3aa2+b2=1

ba2+b2=1

Therefore,

3a=b

3aa2+(3a)2=1

3a=10a2

10a23a=0

a(10a3)=0

Therefore,

a=0 or a=310

Reject a=0

a=310, , b=910