If# x+y+z=1#,#x^2+y^2+z^2=2# and #x^3+y^3+z^3=3# then what's the value of #x^4+y^4+z^4#?
1 Answer
Explanation:
Given:
#{ (x+y+z=1), (x^2+y^2+z^2=2), (x^3+y^3+z^3=3) :}#
The elementary symmetric polynomials in
Note that:
#2(xy+yz+zx) = (x+y+z)^2-(x^2+y^2+z^2) = -1#
So:
#xy+yz+zx = -1/2#
Note that:
#6xyz = (x+y+z)^3-3(x+y+z)(x^2+y^2+z^2)+2(x^3+y^3+z^3) = 1#
So:
#xyz = 1/6#
Then:
#x^4+y^4+z^4 = (x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)#
#color(white)(x^4+y^4+z^4) = (x^2+y^2+z^2)^2-2((xy+yz+zx)^2-2xyz(x+y+z))#
#color(white)(x^4+y^4+z^4) = 2^2-2((-1/2)^2-2(1/6)(1))#
#color(white)(x^4+y^4+z^4) = 4-2(1/4-1/3)#
#color(white)(x^4+y^4+z^4) = 4+2/12#
#color(white)(x^4+y^4+z^4)= 4+1/6#
#color(white)(x^4+y^4+z^4)= 25/6#
Bonus
Note that:
#(t-x)(t-y)(t-z) = t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz#
So substituting the values for the elementary symmetric polynomials that we found, we find that
#t^3-t^2-1/2t-1/6 = 0#
or if you prefer:
#6t^3-6t^2-3t-1=0#
In theory we could solve this using Cardano's method and directly evaluate
The three roots are:
#t_1 = 1/6(2 + root(3)(44 - 6 sqrt(26)) + root(3)(44 + 6 sqrt(26)))#
#t_2 = 1/6(2 + omega root(3)(44 - 6 sqrt(26)) + omega^2 root(3)(44 + 6 sqrt(26)))#
#t_3 = 1/6(2 + omega^2 root(3)(44 - 6 sqrt(26)) + omega root(3)(44 + 6 sqrt(26)))#
where