If" "veca=3hati+4hatj+5hatk and vec b= 2hati+hatj-4hatk ;How will you find out the component of " "veca " ""perpendicular to" " " vecb?

2 Answers
Mar 6, 2017

(83/21, 94/21, 65/21)

Explanation:

Let vec a = vec a_1 + vec a_2 with vec a_1 ne vec 0, vec a_2 ne vec 0such that << vec a_1, vec a_2 >> = 0 and vec a_2 = lambda vec b with lambda in RR

Making now << vec a, vec b >> = << vec a_1+vec a_2 , vec b>> = << vec a_1, vec b >> + << vec a_2, vec b >> but by hypothesis vec a_2 = lambda vec b so

<< vec a, vec b >> = lambda << vec b, vec b >> so

lambda = (<< vec a, vec b >>)/(<< vec b, vec b >>) so

vec a_2 = (<< vec a, vec b >>)/(<< vec b, vec b >>) vec b and

vec a_1 = vec a - (<< vec a, vec b >>)/(<< vec b, vec b >>) vec b

or

vec a_1 = (3,4,5)-(3 xx 2+4 xx 1-5 xx 4)/(2^2+1^2+4^2)(2,1,-4) = (83/21, 94/21, 65/21)

Mar 6, 2017

The component of veca perpendicular to vecb

=veca-"projection of "veca" " on " " vecb

=veca-(veca*vecb)/abs(vecb)xxvecb/abs(vecb)

=veca-(veca*vecb)/abs(vecb)^2xxvecb

=(3hati+4hatj+5hatk)-((3hati+4hatj+5hatk).(2hati+hatj-4hatk))/abs(2hati+hatj-4hatk)^2xx(2hati+hatj-4hatk)

=(3hati+4hatj+5hatk)-(2*3+4*1+5*-4)/(2^2+1^2+4^2)xx(2hati+hatj-4hatk)

=(3hati+4hatj+5hatk)+10/21xx(2hati+hatj-4hatk)

=1/21[21(3hati+4hatj+5hatk)+10(2hati+hatj-4hatk)]

=1/21[83hati+94hatj+65hatk]