Let vec a = vec a_1 + vec a_2 with vec a_1 ne vec 0, vec a_2 ne vec 0such that << vec a_1, vec a_2 >> = 0 and vec a_2 = lambda vec b with lambda in RR
Making now << vec a, vec b >> = << vec a_1+vec a_2 , vec b>> = << vec a_1, vec b >> + << vec a_2, vec b >> but by hypothesis vec a_2 = lambda vec b so
<< vec a, vec b >> = lambda << vec b, vec b >> so
lambda = (<< vec a, vec b >>)/(<< vec b, vec b >>) so
vec a_2 = (<< vec a, vec b >>)/(<< vec b, vec b >>) vec b and
vec a_1 = vec a - (<< vec a, vec b >>)/(<< vec b, vec b >>) vec b
or
vec a_1 = (3,4,5)-(3 xx 2+4 xx 1-5 xx 4)/(2^2+1^2+4^2)(2,1,-4) = (83/21, 94/21, 65/21)