If tanx=(sqrt (3)+1)/(sqrt (3)-1). What is x?

1 Answer
Oct 9, 2016

x=npi+(5pi)/12" where "n in ZZ

Explanation:

tanx=(sqrt (3)+1)/(sqrt (3)-1).

=>tanx=(sqrt (3)/sqrt3+1/sqrt3)/(sqrt (3)/sqrt3-1/sqrt3).

=>tanx=(1+1/sqrt3)/(1-1xx1/sqrt3).

=>tanx=(tan(pi/4)+tan(pi/6))/(1-tan(pi/4)xxtan(pi/6)).

=>tanx=tan(pi/4+pi/6)=tan((5pi)/12).

=>x=npi+(5pi)/12" where "n in ZZ