If sinx+siny=sqrt3 (cosy-cosx)sinx+siny=3(cosycosx) Find the value of sin3x+sin3ysin3x+sin3y?

1 Answer
Mar 25, 2018

Given

sinx+siny=sqrt3 (cosy-cosx)sinx+siny=3(cosycosx)

2sin((x+y)/2)cos((x-y)/2)=sqrt3* 2sin((x+y)/2)sin((x-y)/2)2sin(x+y2)cos(xy2)=32sin(x+y2)sin(xy2)

=>sin((x+y)/2)cos((x-y)/2)-sqrt3sin((x+y)/2)sin((x-y)/2)=0sin(x+y2)cos(xy2)3sin(x+y2)sin(xy2)=0

=>sin((x+y)/2)[cos((x-y)/2)-sqrt3sin((x-y)/2)]=0sin(x+y2)[cos(xy2)3sin(xy2)]=0

So

sin((x+y)/2)=0sin(x+y2)=0

=>(x+y)/2=0x+y2=0

Now

sin3x+sin3ysin3x+sin3y

=2sin((3(x+y))/2)cos((3(x-y))/2)=2sin(3(x+y)2)cos(3(xy)2)

=2sin(3*0)cos((3(x-y))/2)=2sin(30)cos(3(xy)2)

=0=0