If sinx+siny=sqrt3 (cosy-cosx) Find the value of sin3x+sin3y?

1 Answer
Mar 25, 2018

Given

sinx+siny=sqrt3 (cosy-cosx)

2sin((x+y)/2)cos((x-y)/2)=sqrt3* 2sin((x+y)/2)sin((x-y)/2)

=>sin((x+y)/2)cos((x-y)/2)-sqrt3sin((x+y)/2)sin((x-y)/2)=0

=>sin((x+y)/2)[cos((x-y)/2)-sqrt3sin((x-y)/2)]=0

So

sin((x+y)/2)=0

=>(x+y)/2=0

Now

sin3x+sin3y

=2sin((3(x+y))/2)cos((3(x-y))/2)

=2sin(3*0)cos((3(x-y))/2)

=0