Given
sinx+siny=sqrt3 (cosy-cosx)sinx+siny=√3(cosy−cosx)
2sin((x+y)/2)cos((x-y)/2)=sqrt3* 2sin((x+y)/2)sin((x-y)/2)2sin(x+y2)cos(x−y2)=√3⋅2sin(x+y2)sin(x−y2)
=>sin((x+y)/2)cos((x-y)/2)-sqrt3sin((x+y)/2)sin((x-y)/2)=0⇒sin(x+y2)cos(x−y2)−√3sin(x+y2)sin(x−y2)=0
=>sin((x+y)/2)[cos((x-y)/2)-sqrt3sin((x-y)/2)]=0⇒sin(x+y2)[cos(x−y2)−√3sin(x−y2)]=0
So
sin((x+y)/2)=0sin(x+y2)=0
=>(x+y)/2=0⇒x+y2=0
Now
sin3x+sin3ysin3x+sin3y
=2sin((3(x+y))/2)cos((3(x-y))/2)=2sin(3(x+y)2)cos(3(x−y)2)
=2sin(3*0)cos((3(x-y))/2)=2sin(3⋅0)cos(3(x−y)2)
=0=0