If random variable X has a probability density function of f(x)=1/x on the interval[e,e^2], what is the standard deviation of X?

1 Answer
Jul 22, 2016

3.33615995155373.3361599515537

Explanation:

if the PDF of xx is f(x)=1/xf(x)=1x on the interval of [e,e^2][e,e2] then int_e^(e^2) f(x) dx= 1e2ef(x)dx=1

The expected standard deviation is given by

E[sigma]=sqrt(int_e^(e^2) (x-mu)^2 f(x)dx )E[σ]=e2e(xμ)2f(x)dx

=sqrt(int_e^(e^2) (x^2-2xmu+mu^2)/xdx)=e2ex22xμ+μ2xdx

the integral being
x^2/2 -2mux+mu^2ln(x) x222μx+μ2ln(x)

and
E[sigma] =sqrt( (e^4-e^2)/2 + mu^2 + 2mu - 2mu^2)E[σ]=e4e22+μ2+2μ2μ2

now we need to solve for muμ and we shall have our final answer

E[mu]=int_e^(e^2) xf(x)dx E[μ]=e2exf(x)dx

=int_e^(e^2) 1/x*x dx =e2e1xxdx

=e^2-e = 4.6707742704716=e2e=4.6707742704716

E[sigma] = 3.3361599515537E[σ]=3.3361599515537