If f(x) =x^(-1/3), what is the derivative of the inverse of f(x)?

the answer is -3x^-4, but i don't know how to get there.

1 Answer
Aug 13, 2018

d/(dx)(f^-1(x))=-3x^-4

Explanation:

Here ,

f(x)=y=x^(-1/3)

**Let , the function f be one-one and onto.

So , the inverse function of f(x) exists.**

:.y=x^(-1/3)=(1/x)^(1/3)to[because a^-n=1/a^n]

:.y^3=((1/x)^(1/3))^3

:.y^3=(1/x)^(1/3xx3) to[because(a^m)^n=a^(mn)]

:.y^3=1/x

:.x=1/y^3

:.color(red)(x=y^(-3)

We know that ,

f(x)=y=>x=f^-1(y)to[because "definition of inverse function"]

:.:.d/(dx)(f^-1(x))=-3x^-4 x=f^-1(y)=y^-3

Now changing variable from yto x,

:.color(blue)(f^-1(x)=x^-3

:.d/(dx)(f^-1(x))=d/(dx)(x^-3)

:.d/(dx)(f^-1(x))=-3x^(-3-1)

:.d/(dx)(f^-1(x))=-3x^-4