Given that,
→cosx+coy=a....[1]
→sinx+siny=b....[2]
Squaring and adding [1] and [2], we get,
→cos2x+2cosxcosy+cos2y+sin2x+2sinxsiny+sin2y=a2+b2
→2+2(cosxcosy+sinxsiny)=a2+b2
→2(1+cos(x−y))=a2+b2
→cos(x−y)=a2+b22−1
Dividing equation [1] by [2], we get,
→cosx+cosysinx+siny=ab
→2cos(x+y2)cos(x−y2)2sin(x+y2)cos(x−y2)=ab
→cot(x+y2)=ab
→tan(x+y2)=ba
→x+y2=tan−1(ba)
→x+y=2tan−1(ba)
As, 2tan−1x=sin−1(2x1+x2),we have,
→x+y=sin−1⎛⎜
⎜⎝2⋅(ba)1+(ba)2⎞⎟
⎟⎠=sin−1(2aba2+b2)
→sin(x+y)=2aba2+b2
Now,
LHS=sin2x+sin2y
=2sin(x+y)⋅cos(x−y)
=2[2aba2+b2][a2+b22−1]
=2ab[2a2+b2⋅a2+b22−2a2+b2]
=2ab[1−2a2+b2]=RHS