If, cosx+cosy=a and sinx+siny=b So Prove That ?? sin2x+sin2y=2ab{1(2a2+b2)}

1 Answer
May 31, 2018

Given that,

cosx+coy=a....[1]

sinx+siny=b....[2]

Squaring and adding [1] and [2], we get,

cos2x+2cosxcosy+cos2y+sin2x+2sinxsiny+sin2y=a2+b2

2+2(cosxcosy+sinxsiny)=a2+b2

2(1+cos(xy))=a2+b2

cos(xy)=a2+b221

Dividing equation [1] by [2], we get,

cosx+cosysinx+siny=ab

2cos(x+y2)cos(xy2)2sin(x+y2)cos(xy2)=ab

cot(x+y2)=ab

tan(x+y2)=ba

x+y2=tan1(ba)

x+y=2tan1(ba)

As, 2tan1x=sin1(2x1+x2),we have,

x+y=sin1⎜ ⎜2(ba)1+(ba)2⎟ ⎟=sin1(2aba2+b2)

sin(x+y)=2aba2+b2

Now,

LHS=sin2x+sin2y

=2sin(x+y)cos(xy)

=2[2aba2+b2][a2+b221]

=2ab[2a2+b2a2+b222a2+b2]

=2ab[12a2+b2]=RHS