Given
ax+bypropsqrt(xy)ax+by∝√xy
=>ax+by=ksqrt(xy)⇒ax+by=k√xy , where k = proportionality constant
=>sqrt(xy)/(ax+by)=1/k⇒√xyax+by=1k
=>(xy)/(ax+by)^2=1/k^2⇒xy(ax+by)2=1k2
=>(4abxy)/(ax+by)^2=(4ab)/k^2⇒4abxy(ax+by)2=4abk2
=>1-(4abxy)/(ax+by)^2=1-(4ab)/k^2⇒1−4abxy(ax+by)2=1−4abk2
=>((ax+by)^2-4abxy)/(ax+by)^2=(k^2-4ab)/k^2⇒(ax+by)2−4abxy(ax+by)2=k2−4abk2
=>(ax-by)^2/(ax+by)^2=(k^2-4ab)/k^2=m^2 "(say)"⇒(ax−by)2(ax+by)2=k2−4abk2=m2(say), where m= constant
=>(ax-by)/(ax+by)=m⇒ax−byax+by=m
=>(ax+by)/(ax-by)=1/m⇒ax+byax−by=1m
Now by componendo and dividendo we get
=>(2ax)/(2by)=(1+m)/(1-m)⇒2ax2by=1+m1−m
=>x=(1+m)/(1-m)xxb/axxy⇒x=1+m1−m×ba×y
=>x=nxxy⇒x=n×y,
where (1+m)/(1-m)xxb/a=n-> "another constant"1+m1−m×ba=n→another constant
Now
(ax^2+by^2)/(xy)ax2+by2xy
=(an^2y^2+by^2)/(ny^2)=an2y2+by2ny2
=(an^2+b)/n-> " A CONSTANT"=an2+bn→ A CONSTANT
Hence
(ax^2+by^2)propxy(ax2+by2)∝xy