If ax+by varies as √(xy), Can you prove that ax^2+by^2 varies as xy?

2 Answers
Jul 8, 2017

Please see below.

Explanation:

As ax+byax+by varies as sqrt(xy)xy

(ax+by)=ksqrt(xy)(ax+by)=kxy, where kk is a constant.

Squaring this we get

(ax+by)^2=k^2xy(ax+by)2=k2xy

or (ax)^2+(by)^2+2abxy=k^2xy(ax)2+(by)2+2abxy=k2xy

or (ax)^2+(by)^2=(k^2-2ab)xy(ax)2+(by)2=(k22ab)xy

and as k,a,bk,a,b are constant k^2-2abk22ab is another constant

Hence (ax)^2+(by)^2(ax)2+(by)2 varies directly as xyxy.

Jul 8, 2017

Given

ax+bypropsqrt(xy)ax+byxy

=>ax+by=ksqrt(xy)ax+by=kxy , where k = proportionality constant

=>sqrt(xy)/(ax+by)=1/kxyax+by=1k

=>(xy)/(ax+by)^2=1/k^2xy(ax+by)2=1k2

=>(4abxy)/(ax+by)^2=(4ab)/k^24abxy(ax+by)2=4abk2

=>1-(4abxy)/(ax+by)^2=1-(4ab)/k^214abxy(ax+by)2=14abk2

=>((ax+by)^2-4abxy)/(ax+by)^2=(k^2-4ab)/k^2(ax+by)24abxy(ax+by)2=k24abk2

=>(ax-by)^2/(ax+by)^2=(k^2-4ab)/k^2=m^2 "(say)"(axby)2(ax+by)2=k24abk2=m2(say), where m= constant

=>(ax-by)/(ax+by)=maxbyax+by=m

=>(ax+by)/(ax-by)=1/max+byaxby=1m

Now by componendo and dividendo we get

=>(2ax)/(2by)=(1+m)/(1-m)2ax2by=1+m1m

=>x=(1+m)/(1-m)xxb/axxyx=1+m1m×ba×y

=>x=nxxyx=n×y,

where (1+m)/(1-m)xxb/a=n-> "another constant"1+m1m×ba=nanother constant

Now

(ax^2+by^2)/(xy)ax2+by2xy

=(an^2y^2+by^2)/(ny^2)=an2y2+by2ny2

=(an^2+b)/n-> " A CONSTANT"=an2+bn A CONSTANT

Hence

(ax^2+by^2)propxy(ax2+by2)xy