If alpha,betaα,β are the roots of equation x^2-px+q=0x2px+q=0 then find the quadratic equation the roots of which are (alpha^2-beta^2)(alpha^3-beta^3) & alpha^3 beta^2+ alpha^2 beta^3(α2β2)(α3β3)&α3β2+α2β3?

2 Answers
Jul 20, 2017

x^2-(p^5-5p^3q+5pq^2)x + (p^6q^2-5p^4q^3+4p^2q^4) = 0x2(p55p3q+5pq2)x+(p6q25p4q3+4p2q4)=0

Explanation:

Given:

x^2-px+q = (x-alpha)(x-beta) = x^2-(alpha+beta)x+alphabetax2px+q=(xα)(xβ)=x2(α+β)x+αβ

We have:

{ (alpha+beta = p), (alphabeta = q) :}

Hence:

(alpha^2-beta^2)(alpha^3-beta^3) = (alpha-beta)^2(alpha+beta)(alpha^2+alphabeta+beta^2)

color(white)((alpha^2-beta^2)(alpha^3-beta^3)) = (alpha^2-2alphabeta+beta^2)(alpha+beta)(alpha^2+alphabeta+beta^2)

color(white)((alpha^2-beta^2)(alpha^3-beta^3)) = ((alpha+beta)^2-4alphabeta)(alpha+beta)((alpha+beta)^2-alphabeta)

color(white)((alpha^2-beta^2)(alpha^3-beta^3)) = (p^2-4q)p(p^2-q)

color(white)((alpha^2-beta^2)(alpha^3-beta^3)) = p^5-5p^3q+4pq^2

and:

alpha^3beta^2+alpha^2beta^3 = (alpha+beta)(alphabeta)^2 = pq^2

So the monic quadratic equation with the these two roots can be written:

0 = x^2-((p^5-5p^3q+4pq^2) + pq^2)x + (p^5-5p^3q+4pq^2)pq^2

color(white)(0) = x^2-(p^5-5p^3q+5pq^2)x + (p^6q^2-5p^4q^3+4p^2q^4)

Jul 20, 2017

Equation is
x^2-(p^5-5p^3q+5pq^2)x+(p^6q^2-5p^4q^3+4p^2q^4)=0

Explanation:

As alpha and beta are roots of x^2-px+q=0

alpha+beta=p and alphabeta=q

Therefore alpha^2+beta^2=p^2-2q

alpha^3+beta^3=(alpha+beta)(alpha^2-alphabeta+beta^2)

= p(p^2-2q-q)=p(p^2-3q)=p^3-3pq

and (alpha^2+beta^2)(alpha^3+beta^3)=alpha^5+beta^5+alpha^2beta^2(alpha+beta)

or (p^2-2q)(p^3-3pq)=alpha^5+beta^5+pq^2

or alpha^5+beta^5=(p^2-2q)(p^3-3pq)-pq^2

The quadratic equation whose roots are given is

is x^2-("sum of roots")x+("product of roots")=0

Sum of roots is (alpha^2-beta^2)(alpha^3-beta^3)+alpha^3beta^2+alpha^2beta^3

= alpha^5+beta^5-alpha^2beta^3-beta^2alpha^3+alpha^3beta^2+alpha^2beta^3=alpha^5+beta^5

= (p^2-2q)(p^3-3pq)-pq^2=p^5-5p^3q+5pq^2

and product of roots is (alpha^5+beta^5-alpha^2beta^3-beta^2alpha^3)(alpha^3beta^2+alpha^2beta^3)

= (p^5-5p^3q+5pq^2-pq^2)(pq^2)

= p^6q^2-5p^4q^3+4p^2q^4

Hence equation is

x^2-(p^5-5p^3q+5pq^2)x+(p^6q^2-5p^4q^3+4p^2q^4)=0