If alpha and beta are the roots of the equation x2+x+1=0,then the equation whose roots are alpha^19 and beta^17 is ?

1 Answer
Jan 12, 2018

# {x-(-1+isqrt3)/2}^2=0, or, (2x+1-isqrt3)^2=0,#

Explanation:

Note that, the roots of the given eqn. are,

#alpha=(-1+isqrt3)/2 and beta=(-1-isqrt3)/2#, which are the

cube roots of unity, i.e., #omega and omega^2#.

Clearly, #omega^3=1#.

Without any loss of generality, let us select,

#alpha=omega, and, beta=omega^2#.

We seek for the eqn. which has roots,

#alpha'=alpha^19, &, beta'=beta^17#.

Now, #alpha'+beta'=alpha^19+beta^17=omega^19+(omega^2)^17#,

#=omega^19+omega^34=omega^19(1+omega^15)#,

#=(omega^3)^6*omega{1+(omega^3)^5}#,

#=(1)^6*omega{1+(1)^5}............[because, omega^3=1]#.

#alpha'+beta'=2omega.........................................................(star_1)#.

#alpha'*beta'=omega^19*omega^34=omega^53#,

#=(omega^3)^17*omega^2=(1)^17*omega^2#.

#rArr alpha'*beta'=omega^2......................................................(star_2)#.

Hence, the reqd. eqn., is given by,

#x^2-(alpha'+beta')x+alpha'beta'=0, i.e., #

#x^2-2omegax+omega^2=0, or, (x-omega)^2=0#.

#:. {x-(-1+isqrt3)/2}^2=0, or, (2x+1-isqrt3)^2=0,#

is the desired eqn.