We are given:
#sinA=-3/5#
Squaring both sides:
#sin^2A=9/25#
Identity:
#color(red)bb(sin^2x+cos^2x=1)#
i.e.
#sin^2x=1-cos^2x#
Substituting this:
#1-cos^2A=9/25#
#cos^2A=16/25#
Taking roots:
#cosA=+-(sqrt(16))/sqrt(25)=4/5#
Since we are in the IV quadrant we expect the cosine to be positive:
#color(blue)(cosA=4/5#
For #cosB# we use the same idea:
#sinB=-1/3#
#sin^2B=1/9#
#1-cos^2B=1/9#
#cos^2B=8/9#
Taking roots:
#cosB=+-(2sqrt(2))/3#
Since we are in the IV quadrant we expect the cosine to be positive:
#color(blue)(cosB=(2sqrt(2))/3)#
Using identity:
#color(red)bb(tanx=sinx/cosx)#
Find:
#tanA and tanB#
#tanA=sinA/cosA=(-3/5)/(4/5)=-3/4#
#tanB=sinB/cosB=(-1/3)/((2sqrt(2))/3)=-1/(2sqrt(2))=-sqrt(2)/4#
Identities:
#color(red)bb(tan(A+B)=(tanA+tanB)/(1-tanAtanB))#
#color(red)bb(tan(A-B)=(tanA-tanB)/(1+tanAtanB))#
#:.#
#tan(A+B)=((-3/4)+(-sqrt(2)/4))/(1-(-3/4)(-sqrt(2)/4))=((-3-sqrt(2))/4)/((16-3sqrt(2))/16)->#
#=(-12-4sqrt(2))/(16-3sqrt(2))=color(blue)(-((12+4sqrt(2)))/(16-3sqrt(2)))#
#tan(A-B)=((-3/4)-(-sqrt(2)/4))/(1+(-3/4)(-sqrt(2)/4))=((-3+sqrt(2))/4)/((16+3sqrt(2))/16)->#
#=(-12+4sqrt(2))/(16+3sqrt(2))=color(blue)(-((12-4sqrt(2)))/(16+3sqrt(2))#
.....................................................................................................................................
#color(blue)(cosA=4/5#
#color(blue)(cosB=(2sqrt(2))/3)#
#color(blue)(tan(A+B)=-((12+4sqrt(2)))/(16-3sqrt(2)))#
#color(blue)(tan(A-B)=-((12-4sqrt(2)))/(16+3sqrt(2))#