If #(a+b+c)(ab+bc+ca) = abc# then how do I prove that #1/(a+b+c)^7 = 1/a^7+1/b^7+1/c^7# ?
1 Answer
Oct 29, 2017
See explanation...
Explanation:
Notice that the condition and the conclusion are both homogeneous.
Hence if we prove the result for
The condition becomes:
#(a+b+1)(ab+b+a) = ab#
That is:
#ab = (a+b+1)(ab+b+a)#
#color(white)(ab) = (a+(b+1))((b+1)a+b)#
#color(white)(ab) = (b+1)a^2+((b+1)^2+b)a+b(b+1)#
#color(white)(ab) = (b+1)a^2+(b^2+3b+1)a+(b^2+b)#
Subtracting
#0 = (b+1)a^2+(b^2+2b+1)a+(b^2+b)#
#color(white)(0) = (b+1)(a^2+(b+1)a+b)#
#color(white)(0) = (b+1)(a+b)(a+1)#
So:
#a = -b" "# or#" "a = -1#
If
#1/(a+b+c)^7 = 1/c^7 = 1/a^7-1/a^7+1/c^7 = 1/a^7+1/b^7+1/c^7#
If
#1/(a+b+c)^7 = 1/b^7 = -1/c^7+1/b^7+1/c^7 = 1/a^7+1/b^7+1/c^7#