If 3x^2y+2x=-32 and dy/dt=-4 when x=2 and y=-3, how do you find dx/dt?

1 Answer
Jan 15, 2018

The chain rule implies dx/dt = (dy/dt)/(dy/dx)" [1]"dxdt=dydtdydx [1]
Use implicit differentiation to obtain dy/dxdydx
Evaluate dy/dxdydx at (2,-3)(2,3)
Substitute the result and dy/dtdydt into equation [1]

Explanation:

Given: 3x^2y+2x=-323x2y+2x=32

Verify that the point (2,-3)(2,3) lies on the curve:

3(2)^2(-3)+2(2)=-323(2)2(3)+2(2)=32

Use implicit differentiation:

6xy+3x^2dy/dx + 2 = 06xy+3x2dydx+2=0

3x^2dy/dx = -2-6xy3x2dydx=26xy

dy/dx = (-2-6xy)/(3x^2)dydx=26xy3x2

Evaluate dy/dxdydx at (2,-3)(2,3)

dy/dx = (-2-6(2)(-3))/(3(2)^2)dydx=26(2)(3)3(2)2

dy/dx = 17/6dydx=176

Substitute dy/dx = 17/6dydx=176 and dy/dt = -4dydt=4 into equation [1]:

dx/dt = (-4)/(17/6)dxdt=4176

dx/dt = -24/17dxdt=2417