If 2tanA=3tanB then prove that: cos2A=13cos2B5135cos2B ?

1 Answer
Apr 29, 2018

Given 2tanA=3tanB

tanA=32tanB

Now

LHS=cos2A

=1tan2A1+tan2A

=194tan2B1+94tan2B

=194sin2Bcos2B1+94sin2Bcos2B

=4cos2B9sin2B4cos2B+9sin2B

=8cos2B18sin2B8cos2B+18sin2B

=4(1+cos2B)9(1cos2B)4(1+cos2B+9(1cos2B))

=4+4cos2B9+9cos2B4+4cos2B+99cos2B

=13cos2B5135cos2B=RHS

Proved