If #1+3^(1/2) i# is the root of the equation #2z^3+az^2+bz+4=0#,find the values of the real numbers of a and b. For the values of a and b, solve the equation. ?
1 Answer
Feb 27, 2018
#1+sqrt(3)i# ,#1-sqrt(3)i# and#-1/2#
Explanation:
Given that
#2z^3+az^2+bz+4 = 0#
and the coefficients are real,
#(z-1-sqrt(3)i)(z-1+sqrt(3)i) = (z-1)^2-(sqrt(3)i)^2#
#color(white)((z-1-sqrt(3)i)(z-1+sqrt(3)i)) = z^2-2z+1+3#
#color(white)((z-1-sqrt(3)i)(z-1+sqrt(3)i)) = z^2-2z+4#
The remaining linear factor must have leading term
So:
#0 = (2z+1)(z^2-2z+4) = 2z^3-3z^2+6z+4#
So