If 0<(alpha),(beta),(gamma)<(pi)/20<(α),(β),(γ)<π2 prove that sin(alpha)+sin(beta)+sin(gamma)>sin(alpha+beta+gamma)sin(α)+sin(β)+sin(γ)>sin(α+β+γ)?

1 Answer
Aug 5, 2018

sin(alpha)+sin(beta)+sin(gamma)-sin(alpha+beta+gamma)sin(α)+sin(β)+sin(γ)sin(α+β+γ)

=2sin((alpha+beta)/2)cos((alpha-beta)/2)-(sin(alpha+beta+gamma)-sin(gamma))=2sin(α+β2)cos(αβ2)(sin(α+β+γ)sin(γ))

=2sin((alpha+beta)/2)cos((alpha-beta)/2)-(2cos(alpha/2+beta/2+gamma)sin((alpha+beta)/2))=2sin(α+β2)cos(αβ2)(2cos(α2+β2+γ)sin(α+β2))

=2sin((alpha+beta)/2)[cos((alpha-beta)/2)-cos(alpha/2+beta/2+gamma)]=2sin(α+β2)[cos(αβ2)cos(α2+β2+γ)]

=2sin((alpha+beta)/2)[2sin((alpha+gamma)/2)sin((beta+gamma)/2)]>0=2sin(α+β2)[2sin(α+γ2)sin(β+γ2)]>0

As it is given

0 < alpha,beta and gamma< pi/20<α,βandγ<π2 we have,

((alpha+beta)/2),((alpha+gamma)/2)and((beta+gamma)/2)(α+β2),(α+γ2)and(β+γ2) arr acute angles and sine of all must be > 0>0

Hence

sin(alpha)+sin(beta)+sin(gamma) >sin(alpha+beta+gamma)sin(α)+sin(β)+sin(γ)>sin(α+β+γ)