sin(alpha)+sin(beta)+sin(gamma)-sin(alpha+beta+gamma)sin(α)+sin(β)+sin(γ)−sin(α+β+γ)
=2sin((alpha+beta)/2)cos((alpha-beta)/2)-(sin(alpha+beta+gamma)-sin(gamma))=2sin(α+β2)cos(α−β2)−(sin(α+β+γ)−sin(γ))
=2sin((alpha+beta)/2)cos((alpha-beta)/2)-(2cos(alpha/2+beta/2+gamma)sin((alpha+beta)/2))=2sin(α+β2)cos(α−β2)−(2cos(α2+β2+γ)sin(α+β2))
=2sin((alpha+beta)/2)[cos((alpha-beta)/2)-cos(alpha/2+beta/2+gamma)]=2sin(α+β2)[cos(α−β2)−cos(α2+β2+γ)]
=2sin((alpha+beta)/2)[2sin((alpha+gamma)/2)sin((beta+gamma)/2)]>0=2sin(α+β2)[2sin(α+γ2)sin(β+γ2)]>0
As it is given
0 < alpha,beta and gamma< pi/20<α,βandγ<π2 we have,
((alpha+beta)/2),((alpha+gamma)/2)and((beta+gamma)/2)(α+β2),(α+γ2)and(β+γ2) arr acute angles and sine of all must be > 0>0
Hence
sin(alpha)+sin(beta)+sin(gamma) >sin(alpha+beta+gamma)sin(α)+sin(β)+sin(γ)>sin(α+β+γ)