How you solve this? lim_(n->oo)sum_(k=1)^n1/((k+1)sqrt(k)+ksqrt(k+1)

1 Answer
Mar 18, 2017

1

Explanation:

1/((k+1)sqrt(k)+ksqrt(k+1))=((k+1)sqrt(k)-ksqrt(k+1))/((k+1)^2k-k^2(k+1))

or

1/((k+1)sqrt(k)+ksqrt(k+1))=(sqrt(k)(k+1)-ksqrt(k+1))/(k(k+1))

so

sum_(k=1)^n1/((k+1)sqrt(k)+ksqrt(k+1))=sum_(k=1)^n 1/sqrt(k)-sum_(k=1)^n 1/sqrt(k+1) = 1-1/sqrt(n+1)

then

lim_(n->oo)sum_(k=1)^n1/((k+1)sqrt(k)+ksqrt(k+1))=1-lim_(n->oo)1/sqrt(n+1) = 1