How you demonstrate that C_n^0-C_n^2+C_n^4-C_n^6+...=2^(n/2)cos((npi)/4)?

1 Answer
May 8, 2017

See below.

Explanation:

1/2((1+ i x)^n+(1-i x)^n)=sum_(k=0)^(floor(n/2))(-1)^k((2k),(n))x^(2k)

or with x=1

1/2((1+ i)^n+(1-i)^n)=sum_(k=0)^(floor(n/2))(-1)^k((2k),(n))

Now

1+i = sqrt2 e^(ipi/4)
1-i = sqrt2 e^(-ipi/4)

then

1/2((1+ i)^n+(1-i)^n)= (sqrt2)^ncos((n pi)/4)

so finally

sum_(k=0)^(floor(n/2))(-1)^k((2k),(n)) = 2^(n/2)cos((n pi)/4)