How you calculate this? int_0^1sqrtx/((x+3)sqrt(x+3))10x(x+3)x+3, Using substitution of sqrt(x/(x+3))=txx+3=t.

1 Answer
May 13, 2017

-1+ln31+ln3

Explanation:

Establishing a couple identities first from sqrt(x/(x+3))=txx+3=t:

t^2=x/(x+3)" "" "=>" "" "(1/(x+3)=t^2/x" "color(blue)((star)))t2=xx+3 (1x+3=t2x ())

1/t^2=(x+3)/x=1+3/x1t2=x+3x=1+3x

3/x=1/t^2-1=(1-t^2)/t^23x=1t21=1t2t2

x/3=t^2/(1-t^2)x3=t21t2

x=(3t^2)/(1-t^2)" "color(red)((star))x=3t21t2 ()

dx=(6t(1-t^2)-3t^2(-2t))/(1-t^2)^2dt=(6t)/(1-t^2)^2dt" "color(green)((star))dx=6t(1t2)3t2(2t)(1t2)2dt=6t(1t2)2dt ()

Combining color(blue)((star))() with color(red)((star))():

1/(x+3)=t^2/((3t^2)/(1-t^2))=(1-t^2)/3" "color(orange)((star))1x+3=t23t21t2=1t23 ()

Then we have the integral:

intsqrtx/((x+3)sqrt(x+3))dx=int1/(x+3)sqrt(x/(x+3))dxx(x+3)x+3dx=1x+3xx+3dx

=int(1-t^2)/3(t)(6t)/(1-t^2)^2dt=int(6t^2)/(3(1-t^2))dt=1t23(t)6t(1t2)2dt=6t23(1t2)dt

=2intt^2/(1-t^2)dt=2int(t^2-1+1)/(1-t^2)=2t21t2dt=2t21+11t2

=2int(-(1-t^2))/(1-t^2)dt-2int1/(t^2-1)dt=2(1t2)1t2dt21t21dt

=-2intdt-2int1/((t+1)(t-1))dt=2dt21(t+1)(t1)dt

Partial fraction decomposition on the latter integral gives:

=-2t+int1/(t+1)dt-int1/(t-1)dt=2t+1t+1dt1t1dt

=-2t+lnabs(t+1)-lnabs(t-1)=2t+ln|t+1|ln|t1|

=-2sqrt(x/(x+3))+lnabs( ( sqrt(x/(x+3))+1) / ( sqrt(x/(x+3))-1) )=2xx+3+ln∣ ∣ ∣xx+3+1xx+31∣ ∣ ∣

=-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3)))=2xx+3+lnx+x+3xx+3

Now applying the bounds:

int_0^1sqrtx/((x+3)sqrt(x+3))dx=(-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3))))|_0^110x(x+3)x+3dx=(2xx+3+lnx+x+3xx+3)∣ ∣10

=(-2sqrt(1/4)+lnabs((1+sqrt4)/(1-sqrt4)))-(2(0)+lnabs((0+sqrt3)/(0-sqrt3)))=(214+ln1+414)(2(0)+ln0+303)

=-2(1/2)+lnabs(-3)-(0+ln1)=2(12)+ln|3|(0+ln1)

=-1+ln3=1+ln3