How you calculate this? #int_0^1sqrtx/((x+3)sqrt(x+3))#, Using substitution of #sqrt(x/(x+3))=t#.
1 Answer
Explanation:
Establishing a couple identities first from
#t^2=x/(x+3)" "" "=>" "" "(1/(x+3)=t^2/x" "color(blue)((star)))#
#1/t^2=(x+3)/x=1+3/x#
#3/x=1/t^2-1=(1-t^2)/t^2#
#x/3=t^2/(1-t^2)#
#x=(3t^2)/(1-t^2)" "color(red)((star))#
#dx=(6t(1-t^2)-3t^2(-2t))/(1-t^2)^2dt=(6t)/(1-t^2)^2dt" "color(green)((star))#
Combining
#1/(x+3)=t^2/((3t^2)/(1-t^2))=(1-t^2)/3" "color(orange)((star))#
Then we have the integral:
#intsqrtx/((x+3)sqrt(x+3))dx=int1/(x+3)sqrt(x/(x+3))dx#
#=int(1-t^2)/3(t)(6t)/(1-t^2)^2dt=int(6t^2)/(3(1-t^2))dt#
#=2intt^2/(1-t^2)dt=2int(t^2-1+1)/(1-t^2)#
#=2int(-(1-t^2))/(1-t^2)dt-2int1/(t^2-1)dt#
#=-2intdt-2int1/((t+1)(t-1))dt#
Partial fraction decomposition on the latter integral gives:
#=-2t+int1/(t+1)dt-int1/(t-1)dt#
#=-2t+lnabs(t+1)-lnabs(t-1)#
#=-2sqrt(x/(x+3))+lnabs( ( sqrt(x/(x+3))+1) / ( sqrt(x/(x+3))-1) )#
#=-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3)))#
Now applying the bounds:
#int_0^1sqrtx/((x+3)sqrt(x+3))dx=(-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3))))|_0^1#
#=(-2sqrt(1/4)+lnabs((1+sqrt4)/(1-sqrt4)))-(2(0)+lnabs((0+sqrt3)/(0-sqrt3)))#
#=-2(1/2)+lnabs(-3)-(0+ln1)#
#=-1+ln3#