How would you find the exact value of the six trigonometric function of 330 degrees?

1 Answer
Jan 25, 2017

Use trig table of special arcs and unit circle -->
sin 330 = sin (-30 + 360) = sin (-30) = - sin 30 = - 1/2sin330=sin(30+360)=sin(30)=sin30=12
cos (330) = cos (-30 + 360) = cos (- 30) = cos 30 = sqrt3/2cos(330)=cos(30+360)=cos(30)=cos30=32
tan 330 = sin/(cos) = (-1/2)(2/sqrt3) = - 1/sqrt3 = - sqrt3/3tan330=sincos=(12)(23)=13=33
cot 330 = 1/(tan) = -sqrt3cot330=1tan=3
sec 330 = 1/(cos) = 2/sqrt3 = (2sqrt3)/3sec330=1cos=23=233
csc 330 = 1/(sin) = - 2csc330=1sin=2