How would I find the angle between vectors u & v if u=i+4j & v=-i+2j?

1 Answer
Oct 8, 2015

I found 40.6^@

Explanation:

I wold try using the Scalar (dot) Product between them:
We have: either (using the components):
vecu*vecv=u_xv_x+u_yv_y=(1*-1)+(4*2)=-1+8=7
or:
vecu*vecv=|vecu|*|vecv|*cos(theta)

where theta is the angle between the two vectors:

|vecu|=sqrt(1^2+4^2)=sqrt(17)
|vecv|=sqrt((-1)^2+2^2)=sqrt(5)

Now we can use the two versions together:
u_xv_x+u_yv_y=|vecu|*|vecv|*cos(theta)

7=sqrt(17)sqrt(5)cos(theta)
theta=cos^-1(7/(sqrt(17)sqrt(5)))=40.6^@