How to solve this? We have the ring (ZZ_8,+,*)Demonstrate that the invertible elements of this ring are:hat1,hat3,hat5,hat7.

1 Answer
Apr 11, 2017

We have to prove that these elements are the only ones with an inverse

Explanation:

The elements of ZZ_8 are hat 0, hat 1, hat 2, hat 3. hat 4, hat 5, hat 6 and hat 7. Now:

The inverse of hat 1 is the same hat 1 since hat 1 * hat 1 = hat 1. Similarly:

The inverse of hat 3 is the same hat 3 since hat 3 * hat 3 = hat 1

The inverse of hat 5 is the same hat 5 since hat 5 * hat 5 = hat 1

The inverse of hat 7 is the same hat 7 since hat 7 * hat 7 = hat 1. So these elements are invertible.

Now, let's consider hat 2. The possible products are:

hat 2 * hat 0 = hat 0

hat 2 * hat 1 = hat 2

hat 2 * hat 2 = hat 4

hat 2 * hat 3 = hat 6

hat 2 * hat 4 = hat 0

hat 2 * hat 5 = hat 2

hat 2 * hat 6 = hat 4

hat 2 * hat 7 = hat 6

We can see that no product gives us hat 1. The same way we can prove that hat 4 and hat 6 have no inverses. By definition hat 0 is not invertible.

Therefore, the only invertible elements are hat 1, hat 3, hat 5 and hat 7

In general terms, invertible elements in these rings are the ones coprime with the order (8 in this case) of the ring