In an equilateral DeltaOAB, we know that,
OA=AB=OB rArr OA^2=AB^2=OB^2....(ast)
With O(0,0), A(3,4), and B(x,y), using the Distance Formula,
(ast) rArr 3^2+4^2=(x-3)^2+(y-4)^2=x^2+y^2, i.e.,
25=x^2+y^2-6x-8y+25=x^2+y^2.
OA^2=OB^2 rArr x^2+y^2=25...(1).
8yAB^2=OB^2 rArr 6x+8y=25, or, y=(25-6x)/8.........(2).
(2), and, (1) rArr x^2+(25-6x)^2/64=25.
:. 64x^2+(625-300x+36x^2)=1600
:. 100x^2-300x=975, completing square, we get,
100x^2-300x+15^2=975+15^2=1200.
:. (10x-15)^2=(20sqrt3)^2
:. 10x-15=+-20sqrt3, or, 10x=15+-20sqrt3
:. x=3/2+-2sqrt3
x=3/2+2sqrt3, and (2) rArr y=1/8{25-6(3/2+2sqrt3)}=1/8(25-9-12sqrt3)=1/8(16-12sqrt3)=2-3/2sqrt3.
Similarly, x=3/2-2sqrt3 rArr y=2+3/2sqrt3.
Therefore, (x,y)=(3/2+2sqrt3,2-3/2sqrt3), or,
(x,y)=(3/2-2sqrt3,2+3/2sqrt3).
Enjoy Maths.!