"Reqd. Lim."=lim_(n to oo) {1+x^n(x^2+4)}/{x(x^n+1)}
=lim_(n to oo) {1+x^(n+2)+4x^n}/{x^(n+1)+x}......(1)
=lim_(n to oo) {x^n(1/x^n+x^2+4)}/{x^n(x+1/x^(n-1))
=lim_(n to oo) (1/x^n+x^2+4)/(x+1/x^(n-1))......(2).
Now, we have to consider 3 Cases :-
Case 1 : 0 lt x lt 1.
In this Case , we know that, as n to oo, x^n to 0.
And, "by (1), :., Reqd. Lim.="{1+x^2(0)+4(o)}/{x(0)+x)=1/x.
Case 2 : x=1.
"The Reqd. Lim.="(1+1+4)/(1+1)=6/2=3.
Case 3 : x gt 1.
In this Case, because 0 lt 1/x lt 1, :. " as "n to oo, 1/x^n to 0.
Hence, "by (2), the Reqd. Lim."=(0+x^2+4)/{x+1/x(0)}=(x^2+4)/x, or, x+4/x.
Enjoy Maths.!