How to solve this?f:RR\{2}->RR;f(x)=x^2/(x-2).Demonstrate that 8<=int_3^4f(x)dx<=9

1 Answer
Apr 6, 2017

See below.

Explanation:

We have

f'(x)=(x^2-4x)/(x-2)^2

and

f'(x) is monotonic increasing for 3 le x le 4

with

m_3=f'(3)=-3
m_4=f'(4)=0

so

for 3 le x le 4->{(l_i(x)=f(3)+m_3(x-3) le f(x)),(l_s(x)=f(3)+m_4(x-3) ge f(x)):}

but also defining l_1(x) = f(4)+m_4(x-3) and calculating

x_m= l_i(x) nn l_1(x)=10/3

we have that l_2(x) = {(l_i(x), 3 le x le x_m),(l_1(x), x_m lt x le 4):}

is such that

l_2(x) le f(x) for 3 le x le 4 so

int_3^4 l_2(x)dx le int_3^4f(x)dx le int_3^4l_s(x)dx

but

int_3^4 l_2(x)dx=49/6 and
int_3^4 l_s(x)dx=9

so finally

8 < 49/6 le int_3^4f(x)dx le 9