How to solve this equation: secx - cosx = sinx? Thank you!

1 Answer
Feb 19, 2018

secx - cosx = sinx

1/cosx - cosx = sinx

(1-cos^2x)/cosx = sinx

sin^2x/cosx=sinx

sin^2x/cosx-sinx=0

(sinx)(sinx/cosx-1)=0

Here, sinx=0 or

tanx=1

x=sin^(-1) 0 or x= tan^(-1) 1

Hence, the general solution would be {kπ}∪{π/4+kπ},k∈ZZ