How to solve tanx + cotx = 4cos2x? Thank you

1 Answer
Feb 18, 2018

General solution: x=(4n+1)pi/8 ; n in z

Explanation:

tanx+cotx=4cos2x or sinx/cosx+cosx/sinx=4cos2x or

(sin^2x+cos^2x)/(cosx*sinx)=4cos2x or

1/(1/2(2cosx*sinx))=4cos2x ; [sin2x=2sinxcosx] or

2/(sin2x)=4cos2x or 2sin2xcos2x=1

[sin4x=2sin2xcos2x] or

sin4x=1; sin (pi/2)=1 :. 4x =pi/2 :. x=pi/8

General solution: x=(4n+1)pi/8 ; n in z [Ans]