How to solve cos(x)+sin(x) > 0cos(x)+sin(x)>0?
3 Answers
See the answer below...
Explanation:
We know that ,
" " color(red)(sin^2x+cos^2x=1sin2x+cos2x=1 Let's use the inequality here.....
sin^2x+cos^2x=1sin2x+cos2x=1
=>(sinx+cosx)^2-2cdot sinx cdot cosx=1⇒(sinx+cosx)2−2⋅sinx⋅cosx=1
=>(sinx+cosx)^2=1+2 cdot sinx cdot cosx⇒(sinx+cosx)2=1+2⋅sinx⋅cosx
[The value ofcolor(red)(2 cdot sinx cdot cosx2⋅sinx⋅cosx might becolor(red)(0)0 butcolor(red)(1>01>0 ]
=>(sinx+cosx)^2>0⇒(sinx+cosx)2>0
=>sinx +cosx>0⇒sinx+cosx>0 Hope it helps...
Thank you...
Explanation:
and
making now
we get
Explanation:
sin x + cos x > 0
Use trig identity:
On the unit circle, cos (x - pi/4) > 0 --> 2 solutions:
a. the arc
b. The arc
Answers by intervals: