This is an inequality with absolute values.
#|x|+|x-2|<5#
#|x|+|x-2|-5<0#
Let #f(x)=|x|+|x-2|-5#
#{(x>=0),(x-2>=0):}#, #<=>#, #{(x>=0),(x>=2):}#
Let's build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaaaa)##0##color(white)(aaaaaaaaa)##2##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaa)##+##color(white)(aaaaaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaaaaa)##-##color(white)(aaaaaa)##-##color(white)(aaaaaaa)##+#
#color(white)(aaaa)##|x|##color(white)(aaaaaaaaaa)##-x##color(white)(aaaaaaa)##x##color(white)(aaaaaaaa)##x#
#color(white)(aaaa)##|x-2|##color(white)(aaaaaa)##-x+2##color(white)(aa)##-x+2##color(white)(aaaa)##x-2#
In the interval #(-oo,0)#
#-x-x+2-5<0#, #=>#, #2x > -3#, #=>#, #x> -3/2#
#-3/2 in (-oo, 0)#
In the interval #(0,2)#
#x-x+2-5<0#, #=>#, #0-3<0 #, # => #, solution
In the interval #(2,+oo)#
#x+x-2-5<0#, #=>#, #2x<7#, #=>#, #x<7/2#
#7/2 in (2, +oo)#
The solution is # x in (-3/2, 7/2)#
graph{|x|+|x-2|-5 [-10, 10, -5, 5]}