How to solve 4sin2(3x+π6)=3?

So, sin(3x+π6)=±32. Then what?

2 Answers
Jun 7, 2018

x=(2k+1)πv(2k13)π

Explanation:

We have sin(2π3)=32 (see https://socratic.org/questions/what-is-sin-2pi-3-equal-to)

Therefore
sin(3x+π6)=±sin(2π3)
3x+π6=(23π+2kπ) v (23π+2kπ)
23π should have the same sin value as 43π
so that we get
3x+π=6(23π+2kπ) v 6(43π+2kπ)
3x=(4ππ+12kπ)v(12ππ+12kπ)
3x=(3π+12kπ)v(11π+12kπ)
x=(π+4kπ) v (113π+4kπ)
x=(2k+1)π v (2k13)π

Jun 8, 2018

x=(2k+1)π3

Explanation:

4sin2(3x+π6)=3
sin(3x+π6)=±32
a. sin(3x+π6)=32
Trig table and unit circle give 2 solutions for 3x+π6:
1. 3x+π6=π3 --> 3x+π=2π
3x=2ππ=π+2kπ -->x=π3+2kπ3
2. 3x+π6=2π3 --> 3x+π=4π
3x=3π+2kπ --> x=π+2kπ3
General answer: x=(2k+1)π3
b. sin(3x+π6)=32
Trig table and unit circle give 2 solutions for 3x+π6
1. 3x+π6=(4π3) --> (3x+π)=8π
3x=7π+2kπ --> x=7π3+2kπ3, or
x=π3+2kπ3
2. 3x+π6=5π3 --> 3x+π=10π
3x=9π+2kπ --> x=3π+2kπ3, or
x = pi + (2kpi)/3
General answer: x=(2k+1)π3