How to solve 3sinx + 3cosx = secx + cosecx for x? Thank you!
1 Answer
Feb 18, 2018
See the answer below...
Explanation:
=>3sinx+3cosx=secx+cscx⇒3sinx+3cosx=secx+cscx
=>3sinx+3cosx=1/cosx+1/sinx⇒3sinx+3cosx=1cosx+1sinx
=>3sinx+3cosx=(sinx+cosx)/(sinx cdot cosx⇒3sinx+3cosx=sinx+cosxsinx⋅cosx
=>(sinx+cosx)(3-1/(sinx cdot cosx))=0⇒(sinx+cosx)(3−1sinx⋅cosx)=0
=>(sinx+cosx)(3-2/(2 cdot sinx cdot cosx))=0⇒(sinx+cosx)(3−22⋅sinx⋅cosx)=0
=>(sinx+cosx)(3-2/sin(2x))=0⇒(sinx+cosx)(3−2sin(2x))=0 Either,
(sinx+cosx)=0(sinx+cosx)=0
=>sinx=-cosx⇒sinx=−cosx
=>tanx=-1=tan(-pi/4)⇒tanx=−1=tan(−π4)
color(red)(ul(bar(|color(green)(=>x=npi-pi/4)| Or,
(3-2/sin(2x))=0
=>2/sin(2x)=3
=>sin2x=2/3=sinalpha
=>2x=npi+(-1)^nalpha
=>color(red)(ul(bar(|color(green)(x=(npi)/2+(-1)^n(alpha/2))|
Hope it helps...
Thank you...