How to simplify this .?
(4x^2 - y^2)/(12x^2 - 4xy-y^2)4x2−y212x2−4xy−y2
1 Answer
with exclusion
Explanation:
Given:
(4x^2-y^2)/(12x^2-4xy-y^2)4x2−y212x2−4xy−y2
We can factor both numerator and denominator and then cancel any common factor.
The numerator is a difference of squares, so factors as:
4x^2-y^2 = (2x)^2-y^2 = (2x-y)(2x+y)4x2−y2=(2x)2−y2=(2x−y)(2x+y)
To factor the denominator find a pair of factors of
12x^2-4xy-y^2 = (12x^2-6xy)+(2xy-y^2)12x2−4xy−y2=(12x2−6xy)+(2xy−y2)
color(white)(12x^2-4xy-y^2) = 6x(2x-y)+y(2x-y)12x2−4xy−y2=6x(2x−y)+y(2x−y)
color(white)(12x^2-4xy-y^2) = (6x+y)(2x-y)12x2−4xy−y2=(6x+y)(2x−y)
So we find:
(4x^2-y^2)/(12x^2-4xy-y^2) = (color(red)(cancel(color(black)((2x-y))))(2x+y))/((6x+y)color(red)(cancel(color(black)((2x-y)))))
color(white)((4x^2-y^2)/(12x^2-4xy-y^2)) = (2x+y)/(6x+y)
with exclusion