How to Prove ??? (sinA+cosA)/(cosA-SinA) = tan2A+sec2AsinA+cosAcosAsinA=tan2A+sec2A

2 Answers
May 21, 2018

LHS=(sinA+cosA)/(cosA-SinA)LHS=sinA+cosAcosAsinA

=(sinA+cosA)^2/((cosA-SinA)(cosA+sinA)=(sinA+cosA)2(cosAsinA)(cosA+sinA)
=(sin^2A+cos^2A+2sinAcosA)/(cos^2A-Sin^2A)=sin2A+cos2A+2sinAcosAcos2Asin2A

=(2sinAcosA+1)/(cos2A)=2sinAcosA+1cos2A

=(sin2A)/(cos2A)+1/(cos2A)=sin2Acos2A+1cos2A

= tan2A+sec2A=RHS=tan2A+sec2A=RHS

May 21, 2018

It seemed easier to start from the right; please see proof below.

Explanation:

We need the crudest cosine double angle formula:

cos(2A) = cos(A+A) = cos^2 A - sin ^2 A cos(2A)=cos(A+A)=cos2Asin2A

sin(2A) = sin(A+A) = 2 sin A cos A sin(2A)=sin(A+A)=2sinAcosA

tan 2A + sec 2A tan2A+sec2A

= {sin 2A}/{cos 2A} + 1/{cos 2A } =sin2Acos2A+1cos2A

= {1 + sin 2A}/{cos 2A } =1+sin2Acos2A

= { 1 + 2 sin A cos A}/{cos^2 A - sin ^2A } =1+2sinAcosAcos2Asin2A

={ sin ^2 A + cos ^2 A + 2 sin A cos A }/{cos ^2 A- sin ^2 A}=sin2A+cos2A+2sinAcosAcos2Asin2A

= {(sin A + cos A)^2 }/{(cos A - sin A)(cos A+sin A)}=(sinA+cosA)2(cosAsinA)(cosA+sinA)

= {sin A + cos A}/{cos A - sin A} quad sqrt