How to integrate the following ??

intdx/(1 - x^2)^(3/2)

1 Answer
Oct 1, 2017

The answer is =x/sqrt(1-x^2)+C

Explanation:

We need intsec^2x dx=tanx

We perform this integral by substitution

Let x=sintheta, =>, dx=costheta d theta

1-x^2=1-sin^2theta=cos^2theta

tan theta=sintheta/cos theta=x/sqrt(1-x^2)

Therefore,

int(dx)/(1-x^2)^(3/2)=int(costhetad theta)/(cos^2)^(3/2)

=int(d theta)/(cos^2theta)

=intsec^2theta d theta

=tantheta

=x/sqrt(1-x^2)+C