How to find the value of csc((5pi)/4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Aug 5, 2015 Find csc ((5pi)/4) Ans: -sqrt2 Explanation: csc((5pi)/4) = 1/sin ((5pi)/4) sin ((5pi)/4) = sin (pi/4 + pi) = - sin pi/4 = - sqrt2/2 csc ((5pi)/4) = 1/sin = -2/sqrt2 = - sqrt2 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 36385 views around the world You can reuse this answer Creative Commons License