How to evaluate int ln(1-x^9)dx as a power series?
2 Answers
int \ ln(1-x^9) \ dx = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - ....
The general term being:
u_n = -x^(9n+1)/(n(9n+1))
Explanation:
A standard power series is:
ln(1+x) = x-1/2x^2+1/3x^3-1/4x^4 + .... \ \ \ for|x|<1
From this we can deduce;
ln(1-x) = ln(1+(-x) )
" " = -x-1/2x^2-1/3x^3-1/4x^4 - .... \ \ \
And so:
ln(1-x^9) = -x^9-1/2x^18-1/3x^27-1/4x^36 - ....
:. int \ ln(1-x^9) \ dx= int \ -x^9-1/2x^18-1/3x^27-1/4x^36 - .... dx
:. " " = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - ....
The general term being:
u_n = -x^(9n+1)/(n(9n+1))