How to evaluate int ln(1-x^9)dx as a power series?

2 Answers
Mar 1, 2017

int \ ln(1-x^9) \ dx = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - ....

The general term being:

u_n = -x^(9n+1)/(n(9n+1))

Explanation:

A standard power series is:

ln(1+x) = x-1/2x^2+1/3x^3-1/4x^4 + .... \ \ \ for |x|<1

From this we can deduce;

ln(1-x) = ln(1+(-x) )
" " = -x-1/2x^2-1/3x^3-1/4x^4 - .... \ \ \

And so:

ln(1-x^9) = -x^9-1/2x^18-1/3x^27-1/4x^36 - ....

:. int \ ln(1-x^9) \ dx= int \ -x^9-1/2x^18-1/3x^27-1/4x^36 - .... dx
:. " " = -x^10/10-1/2x^19/19-1/3x^28/28-1/4x^37/37 - ....

The general term being:

u_n = -x^(9n+1)/(n(9n+1))

May 2, 2017

1/(1-x)=sum_(n=0)^oox^n

int1/(1-x)dx=sum_(n=0)^oointx^ndx

-ln(1-x)=C+sum_(n=0)^oox^(n+1)/(n+1)

x=0 shows that C=0:

ln(1-x)=-sum_(n=0)^oox^(n+1)/(n+1)

ln(1-x^9)=-sum_(n=0)^oo(x^9)^(n+1)/(n+1)

color(white)(ln(1-x^9))=-sum_(n=0)^oox^(9n+9)/(n+1)

intln(1-x^9)dx=-sum_(n=0)^oointx^(9n+9)/(n+1)dx

color(white)(intln(1-x^9)dx)=C-sum_(n=0)^oox^(9n+10)/((9n+10)(n+1))

x=0 shows C=0:

intln(1-x^9)dx=-sum_(n=0)^oox^(9n+10)/((9n+10)(n+1))