How to demonstrate that int_(-a)^af(x)dx=0∫a−af(x)dx=0 for ff-odd?
1 Answer
By definition:
ff is an odd functioniff f(-x)=-f(x) ⇔f(−x)=−f(x)
Using this definition then we note that if
f(-x)=-f(x) => f(x) = -f(-x) f(−x)=−f(x)⇒f(x)=−f(−x)
Using a property of integrals:
int_a^b \ f(x) \ dx = int_a^c \ f(x) \ dx + int_c^b \ f(x) \ dx
we can write the integral we seek to evaluate as
int_(-a)^(a) \ f(x) \ dx = int_(-a)^(0) \ f(x) \ dx + int_(0)^(a) \ f(x) \ dx
" " = int_(-a)^(0) \ -f(-x) \ dx + int_(0)^(a) \ f(x) \ dx
For the first integral we can perform simply substitution, let:
u=-x => (du)/dx = -1 andu=-x
And we can change the limits of integration: When:
{ (x=-a), (x=0) :} => { (u=a), (u=0) :}
So the integral can be rewritten as:
int_(-a)^(a) \ f(x) \ dx = int_(a)^(0) \ -f(u) \ (-1)du + int_(0)^(a) \ f(x) \ dx
" " = int_(a)^(0) \ f(u) \ du + int_(0)^(a) \ f(x) \ dx
And using another property of integrals (corollary of of the earlier property)
int_a^b \ f(x) \ dx = - int_b^a \ f(x) \ dx
We can write
int_(-a)^(a) \ f(x) \ dx = -int_(0)^(a) \ f(u) \ du + int_(0)^(a) \ f(x) \ dx
And finally noting that definite integral are independent of the integration variable that is :
int_a^b \ f(x) \ dx = int_a^b \ f(u) \ du
we can write:
int_(-a)^(a) \ f(x) \ dx = -int_(0)^(a) \ f(x) \ dx + int_(0)^(a) \ f(x) \ dx
" " = 0 \ \ \ QED