How to calculate this limit?lim_(n->oo)sum_(k=1)^n(1/2^k+1/3^k)
1 Answer
Explanation:
The general term of a geometric series can be written:
a_k = a*r^(k-1)
where
Then we find:
(1-r) sum_(k=1)^n a_k = sum_(k=1)^n a*r^(n-1) - r sum_(k=1)^n a*r^(n-1)
color(white)((1-r) sum_(k=1)^n a_n) = sum_(k=1)^n a*r^(n-1) - sum_(k=2)^(n+1) a*r^(n-1)
color(white)((1-r) sum_(k=1)^n a_n) = a+color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - a*r^n
color(white)((1-r) sum_(k=1)^n a_k) = a(1 - r^n)
Divide both ends by
sum_(k=1)^n a_k = (a(1-r^n))/(1-r)
Both
So we find:
sum_(k=1)^n (1/2^k + 1/3^k) = sum_(k=1)^n 1/2^k + sum_(k=1)^n 1/3^k
color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1/2(1-(1/2)^n))/(1-1/2) + (1/3(1-(1/3)^n))/(1-1/3)
color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1-(1/2)^n) + 1/2(1-(1/3)^n)
Then:
lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k) = lim_(n->oo) ((1-(1/2)^n) + 1/2(1-(1/3)^n))
color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 1+1/2
color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 3/2