How to calculate this limit?lim_(n->oo)sum_(k=1)^n(1/2^k+1/3^k)

1 Answer
Mar 26, 2017

lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k) = 3/2

Explanation:

The general term of a geometric series can be written:

a_k = a*r^(k-1)

where a is the initial term and r the common ratio.

Then we find:

(1-r) sum_(k=1)^n a_k = sum_(k=1)^n a*r^(n-1) - r sum_(k=1)^n a*r^(n-1)

color(white)((1-r) sum_(k=1)^n a_n) = sum_(k=1)^n a*r^(n-1) - sum_(k=2)^(n+1) a*r^(n-1)

color(white)((1-r) sum_(k=1)^n a_n) = a+color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - color(red)(cancel(color(black)(sum_(k=2)^n a*r^(n-1)))) - a*r^n

color(white)((1-r) sum_(k=1)^n a_k) = a(1 - r^n)

Divide both ends by (1-r) to find:

sum_(k=1)^n a_k = (a(1-r^n))/(1-r)

Both 1/2^k and 1/3^k are the terms of geometric sequences, the former with initial term 1/2 and common ratio 1/2, the latter with initial term 1/3 and common ratio 1/3.

So we find:

sum_(k=1)^n (1/2^k + 1/3^k) = sum_(k=1)^n 1/2^k + sum_(k=1)^n 1/3^k

color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1/2(1-(1/2)^n))/(1-1/2) + (1/3(1-(1/3)^n))/(1-1/3)

color(white)(sum_(k=1)^n (1/2^k + 1/3^k)) = (1-(1/2)^n) + 1/2(1-(1/3)^n)

Then:

lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k) = lim_(n->oo) ((1-(1/2)^n) + 1/2(1-(1/3)^n))

color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 1+1/2

color(white)(lim_(n->oo) sum_(k=1)^n (1/2^k + 1/3^k)) = 3/2