How to calculate this? int_0^(2pi)sin(mx)cos(nx)dx; m,n in ZZ.

3 Answers
May 15, 2017

0

Explanation:

Using

sin(a+b)+sin(a-b)=2sina cos b

so

1/2(sin(m+n)x+sin(m-n)x)=sinmx cos nx

now

int_0^(2pi)sinmx cos nx dx = 1/2int_0^(2pi)(sin(m+n)x+sin(m-n)x)dx =

=-[Cos((m - n) x)/(2 (m - n)) +Cos((m + n) x)/(2 (m + n))]_0^(2pi)=

=(sin^2(m-n)pi)/(m-n)+(sin^2(m+n)pi)/(m+n) = 0

Note that

lim_(xi->0)(sin^2 xi pi)/xi = 0

NOTE:

[-Cos(2(m + n) x)/(2 (m + n))]_0^(2pi) = -Cos((m + n) pi)^2/(2 (m + n)) + Sin((m + n)pi)^2/(2 (m + n))+1/(2(m+n)) =Sin((m + n) pi)^2/(m + n)

May 15, 2017

0

Explanation:

int_0^(2pi) f(x)dx = int_(-pi)^pi f(x+pi)dx

but here f(x+pi)=(-1)^(m+n)f(x) and also

f(x)=-f(-x) is an odd function so

int_0^(2pi) f(x)dx = (-1)^(n+m)int_(-pi)^pi f(x) dx = 0

May 16, 2017

Explanation:

Substitute t=x-pi so x = t-pi and dx = dt.

The limits of integration become -pi and pi and the new integrand is an odd function.

sin(mx) = sin(mt-mpi) = sin(mt)cos(mpi) which is an odd function of t

cos(nx) = cos(nt)cos(npi) which is an even function of t.

int_0^(2pi)sin(mx)cos(nx)dx = int_-pi^pi sin(mt)cos(mpi)cos(nt)cos(npi) dt

The integrand on the right is odd, so the integral from -a to a is 0.