How to calculate limit?lim_(n->oo)sum_(k=0)^n(C_n^k)/(2n)^k

1 Answer
Mar 27, 2017

e^(1/2)

Explanation:

lim_(n->oo)sum_(k=0)^n(C_n^k)/(2n)^k

(1+y)^n =sum_(k=0)^n((k),(n))y^k now making

y = x/(2n) we have

(1+x/(2n))^n =sum_(k=0)^n((k),(n))(x/(2n))^k

then

lim_(n->oo)(1+x/(2n))^n=e^(x/2) Now making x=1

we have

lim_(n->oo)(1+1/(2n))^n=e^(1/2)