How ro solve this? arccosx>arccosx^2.

1 Answer
Apr 28, 2017

-1 < x < 0

Explanation:

Using

Sin(a-b)=sina cosb-cosa sinb

we have

sin(arccosx-arccosx^2)=x^2 sqrt[1 - x^2] - x sqrt[1 - x^4] > 0

or

x sqrt[1 - x^2] (x - sqrt[1 + x^2]) > 0

now assuming sqrt[1 - x^2] > 0 for abs x < 1 we have

x(x - sqrt[1 + x^2]) > 0

but

sqrt[1 + x^2] > x so we need

-1 < x < 0